少し前まではビッグデータの活用を考えると高いハードルを越える必要がありましたが、近年ではAIの発展によって、今までよりもビッグデータの活用がしやすくなりました。
しかし実際にAIがビッグデータに役立つのか、どうやって使っていけばいいのかまでわからない方も多いのではないでしょうか。
ここではAIの発展がビッグデータ活用にどう役立つのか、どうすれば自社でも始められるのかを中心に解説します。
ヤフーの行動ビッグデータを分析できるデスクリサーチツール「DS.INSIGHT」の詳細資料をダウンロード
[toc]
※本記事はヤフー株式会社提供によるスポンサード・コンテンツです。
AIの活用でビッグデータの分析がよりすばやく、より正確になった
AIの発展により、従来よりもビッグデータの分析の効率化がなされ、かつ正確になりました。今まで大きすぎて活用できなかったデータも、AIで分析できるようになったので、人間では思いつかないようなレベルの価値創出ができます。 データを新たな切り口で分析したり、データの質が高くなったりすることから、ビジネスチャンスの拡大が見込めるでしょう。AIの活用によるメリットは以下の通りです。- ビッグデータの分析の効率化
- 生産性の向上
- 精度アップ
- 人材不足の解消
- 人件費や管理費等のコスト削減
データ量の増量とAIの技術進歩により活用が現実的になった
インターネットの普及や、自然言語処理(NLP)の技術の発達により、ビジネスに必要な膨大なデータを解析できる技術の活用が現実的になったことで、多くの企業で導入されるようになり注目されるようになりました。 2012年頃から膨大なデータを収集できるようになり、「ビッグデータ」という言葉の認識がビジネス社会全体に広がります。 マーケティングやコスト、サービスなど、ビジネスに必要なデータも含まれていましたが、あまりにも膨大で処理しきれませんでした。途方もないデータ解析作業には、労力とコストがかかります。 同時期に、ディーププランニングというデータ解析技術が発達し、2015年頃にはディーププランニングの技術を低いコストで使えるようになりました。 参考:識者に聞く。「AI×ビッグデータ」は『入社後活躍』に活かせるのか? | エン・ジャパン(en-japan)人間では導き出せない仮説を生み出す可能性がある
機械学習能力により、人間の経験値だけでは導き出せない仮説を生み出す可能性があります。人間では処理しきれない膨大なデータを活用することで、客観的なデータによるアクションプランを作成できるためです。 優秀な人間だとしても、すべての商品や顧客のデータを完璧に頭に入れ、さらに解析することは極めて難しいでしょう。しかし、ビッグデータとAIを掛け合わせることで、可能となります。 例えば作業に危険を伴う工場では、ビッグデータの活用とAIの予兆検知能力を使い、重大事故やトラブルの防止策を考えることが可能です。他の業種でも同様に、これまでにない新しい仮説を見いだすことができるでしょう。 参考:ビッグデータの全体像とは?IoT・クラウド・AIとの関連性と事例まとめ | 記事|ソリューション|パイプドビッツ公式HP 参考:ビッグデータ分析の課題と解決法 データ活用を円滑にする3つのツール | 俺のクラウドビッグデータ×AI分析で成功した2つの事例
H3:AIによって年間200万個以上返品数を削減したオンラインサイトの事例 ドイツのEコマース小売販売業者「Otto社」はAIを活用することで年間で約200万以上の数の返品を削減しました。 Otto社では、年間200万個以上の返品に悩まされていました。顧客からの返品が多かった理由には、商品発送の遅さが関係しています。 それもそのはずで、Ottoでは毎月20万種類の商品が注文されていますが、それらすべてを人間が管理することは不可能でした。発送が遅くなってしまうのは、「仕方のないこと」と片付けるしかなかったのです。 そこで、AIの部門投資家のネイサン・ベナイーク氏に協力を仰ぎ、在庫の管理等にAIを導入しました。人間の手では限界があると感じたために、ベストの判断を下します。その結果、余剰在庫が20%ほど減少し、200万個以上の返品を削減することに成功したのです。 そこから「購入者のもとに購入商品がすぐに届くことでリピーター率が上がり、返品率が下がる」というデータも取得しています。 参考:ドイツのOtto社に見る人工知能(AI)の活用方法~欧州原子核研究理事会の研究が小売企業にもたらした効果とは h3:人材採用にAIを利用し、大量のESを自動的に振り分けできるようにした事例 ソフトバンク社では人事部にAIを導入し、大量のESを自動振り分けできるようにしたことで、業務効率を大幅に改善しています。 人材採用における人事部の負担は大きいものです。大企業になると、大量のES(エントリーシート)を手作業で読む必要があります。 ソフトバンクの場合、毎年3000人分のECが送られてくるといい、人間の手ですべてに目を通すことは膨大な業務量になるでしょう。 その業務状況を改善するため、人事担当者がソフトバンク提携のIBMのAI「Warson」にこれまで採用した学生のエントリーシートを記憶させ、同じような傾向のある学生をまとめることに成功しました。 それ以来、ESの自動振り分けを実現し、ソフトバンク人事担当者の業務を大幅に削減することに成功し、3000人分のESから優秀な人材を効果的に見つけられるようになりました。 参考:AI(人工知能)×人事で挑戦するスタートアップ 〜AIで優秀な人材を獲得〜ビッグデータをAI分析するために必要な3つのこと
ビッグデータをAIで分析するためには以下の3つが必要です。- 企業の課題を認識しどのようにAIを活用するのか明確にする
- AI分析を行うための環境の整備
- AI分析の知識をもつ人材の確保